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Abstract—We present a training tool flow for deep neural
networks (DNN) optimized for a hardware-efficient FPGA-
implementation based on reconfigurable constant-coefficient
multipliers (RCCMs). RCCMs replace the costly generic
multipliers by shift-and-add operations. In previous work, it
was shown that RCCMs offer a better alternative for saving
FPGA area than utilizing low-precision arithmetic. This work
proposes an improved tool flow that enables layer-wise weight
quantization, a larger search space by additional RCCM
coefficient sets and an optimized retraining. This leads to
an improved accuracy compared to the previous method. In
addition, hardware requirements are lower as only 1 to 3
adders per multiplication are used. This reduces the overall
complexity and the required memory bandwidth simultaneously.
We evaluate our tool flow using multiple networks (ResNets) on
the ImageNet data set.

Index Terms—FPGA, Neural Network Accelerator, Arithmetic,
Neural Network Training, Tool flow, Fixed-Point, Low-Precision

I. INTRODUCTION

Deep Neural Networks (DNNs) are increasingly important
for many application areas from embedded systems [1] to
data centers [2]. Thus, their area and energy efficient imple-
mentation is becoming a major concern [3]. In this context,
field-programmable gate array (FPGA) implementations have
shown the capability to outperform CPU or GPU based
inference [4], [5]. FPGAs offer the ability to adapt arithmetic
implementations to characteristics of a specific DNN, but this
regularly requires a parameter quantization to reduce area
demands. Thus, they increase efficiency at the price of a
largely increased design effort [4].

AddNet [6] investigates the application of reconfigurable
constant-coefficient multipliers (RCCMs) to replace generic,
low-precision multiplications in FPGA-based DNN imple-
mentations. RCCMs are a special type of time-multiplexed
Multiple Constant Multipliers (MCM [7]), which allow for
runtime switching between weights in an efficient way. As
they only use adders, subtractors, bit shifts and multiplexers,
they are less costly than generic multiplications, even for
low-precision arithmetic [6]. Additionally, due to the specific
encoding scheme for possible coefficient values, a reduction
in weights storage can be achieved.

A specific training scheme is required to adapt RCCM selec-
tion and the DNN’s coefficient values distribution by mapping
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RCCM coefficient representations to the DNN’s weights distri-
bution, thus minimizing quantization loss. This sets the ground
for the principal approach to reduce the mismatch between
DNN computations and FPGA device architecture by replacing
low-precision arithmetic by more suitable RCCMs. The idea
in AddNet is to use a two-step training procedure, starting
with an already trained network represented by floating-point
values as the input. In the first step, a fixed-point training
is used to quantize the input network. In the second step,
the quantized version is retrained to adapt its weights to the
specific values provided by RCCMs. The RCCMs with their
resulting values are selected based on the weight distribution
of the quantization-aware training (QAT). Furthermore, all
AddNet RCCMs are based on a symmetric value distribution
around zero and also have a fixed structure.

Previous work [6] already demonstrates that this kind of
device architecture adaptation leads to better implementations
in terms of area savings. In this paper, we improve this
approach by considering the absolute quantization error when
adapting the RCCMs and, in contrast to AddNet, quantization
and selection of RCCM coefficients are applied on a per-layer
basis. Also, a larger variety of RCCMs is provided and the
training, as well as the accuracy evaluation, are improved. The
main contributions of this paper are:

« the extension of the reachable search space by the intro-
duction of additional connection structures for RCCMs in
combination with a larger set of used operations (Sec. III),

o an adapted training for improved layer-wise fixed-point
range scaling and a focus on only the significant weights
for word size considerations (Sec. II),

e an improved and automated RCCM selection for the
quantization-aware training cycle (Sec. IV),

« amodified accuracy metric to address quantization related
ambiguities (Sec. II-B).

II. QUANTIZATION AWARE TRAINING WITH MQUAT

Several frameworks exist that allow QAT, e.g., [8]-[10].
Even small variations in the training process can lead to very
different results concerning actual weights or overall accuracy
of the quantized network. They can even lead to instabilities
of the results, including complete accuracy deterioration. As
our approach capitalizes on quantization using specific weight
distributions while retaining accuracy, these observations are
of paramount interest here.



We refined the open-source Modular Quantization Aware
Training (MQUAT) framework' for this work as described
below. MQUAT is an extension of the TensorFlow 2 framework
and uses an interface structure similar to Keras. MQUAT
allows to optionally quantize activations, weight-values, bias-
values, summations in the matrix multiplications and layer out-
puts separately. A specified quantization only applies during
inference; the weights are still saved as floating-point values
and can therefore slowly drift during backpropagation, follow-
ing the concept of a straight-through estimator (STE) [11].
However, we suppress gradients that would result in values
outside the specified quantization range.

The training tool flow used here performs a layer-based
fixed-point quantization followed by a matching of RCCM co-
efficient sets to the weight value distributions of the quantized
network layers. This approach results in a tight architecture
adaptation of the arithmetic.

A. Adaptation of the Quantization to the Value Distribution

Quantization of the floating-point weights is done by a
stepwise reduction of the word size available for the values
accompanied by retraining the network, thus slowly adapting
the quantization values to the original values. This is nec-
essary as directly using the target word size usually leads
to bad accuracy results. By clipping outliers, only the most
relevant range is considered for quantization [12], [13]. This
is implemented in MQUAT by ignoring all outliers that are
larger than a user-defined factor of the standard deviation, thus
reducing the value range of the input floating-point numbers
and enabling a better fit of the fixed-point representations.

To match the fixed-point range to the distribution of a
clipped floating-point value set W, a layer-wise scaling is
performed, based on the value-distributions of the occurring
weights Wy, biases Wp, and activations W,. While the
values of Wy and Wy are embedded in the trained network,
we determine the activations W, using data from the first
calculated inferences. These values are used for scaling the
weights, biases, and activations individually:

We calculate the position of the binary point such that the
resulting fixed-point value range is minimal and just includes
the largest and smallest occurring floating-point values.

Then, we try to move this binary point position one bit
to the left, i.e., moving one additional digit from the integer
part to the fraction part. This means that the largest value
in W now is outside the integer range. We only keep this
new position if the resulting distance between the largest and
smallest fixed-point and floating-point values is not too large.
In our experiments, an empirically selected maximum distance
of 5% worked reasonably well.

This addresses the cases where the scaling factor represent-
ing the binary point position shift was almost one position
less; the extended fraction range then delivers a more accurate
resolution to match the weight values in W.

Due to the asymmetry of the two’s complement represen-
tation, the consideration must be carried out separately for
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Fig. 1. Example for quantizing a prediction vector of a classifier: floating-
point values (left), two bit quantization (right). The respective maximum
evaluation is highlighted in green. Sorting result for top-k acc. evaluation
from two different (A and B) sorting options.

the positive and negative fixed-point bounds and the largest
resulting range extension must be used.

B. Accuracy Metric for Low Word Sizes

The general approach for a classifier to determine a top-
k metric from a prediction vector is to take the numerically
highest k class predictions and check if the correct class is
present as shown in Fig. 1 (left). As shown on the right side
of Fig. 1, quantization to low word sizes notoriously results
in tie situations, which must be resolved.

We solved this by defining /N~ as the number of prediction
values greater than the prediction value for the correct class,
and N> as the number of prediction values greater than or
equal to the prediction value for the correct class. For example,
in Fig. 1, Ny = 2 and N> = 4, if cat was the correct class.
If Ns is larger or equal to k, the top-k accuracy metric is
0, because neither the correct class nor other classes with the
same prediction value are in the top-k. Otherwise, we have
the tie case in which the conventional top-1 accuracy depends
on the sorting of the outputs. Hence, we define the metric
to be equal to max(k/N>, 1) to be independent of the actual
sorting. For example, the top-1 accuracy in Fig. 1 leads to %
instead of a random O or 1 result. With this, ambiguous cases
are penalized during training.

III. SEARCH SPACE AND RCCM COMPOSITION

In AddNet [6], the RCCM connection structures (CS) as
shown in Fig. 2 were filled with pre-defined base cell (BC)
combinations. We extend the search space by a larger operation
set for the base cells and integrate the BC selection for each
placeholder of the RCCM structure into the training process.

A. Low-level Implementation

The RCCM BCs used in this work are shown in Fig. 3.
The data path structures are designed to use the same FPGA
resources as one standard ripple carry adder. For each of the
cases A, B, and C all data path options are shown. Using the
select lines s, the data path for the adder can be controlled
via the multiplexers. The combined select lines of the BCs
become the select lines of the RCCM. The mapping from s to
a specific data path configuration for a specific BC is defined
by a selection function o(s), which is shown as a function
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Fig. 2. RCCM connection structures 1-Add up to 4-Add. Each base cell is
shown as one box with the data inputs A and B and the select lines s;. Input
value of each RCCM is X and the output of each RCCM is Y

Fig. 3. Low-level base cell implementations: A, B from [6], C is a new
structure. The gray boxes can be implemented in LUT resources, the parts
outside the boxes in the routing network.

block in each BC. However, for an implementation, each BC
uses two bits of s and o(s) is chosen and fixed to just four
combinations of the multiplexers. During runtime, it is possible
to switch between these four cases using s [6].

Each BC implementation is geared to utilize low-level
features of the target FPGA architecture to the greatest pos-
sible extent. However, while cells A and B were designed to
address the Xilinx Virtex [14] architecture, cell B can also be
implemented on Intel FPGAs. BC C is introduced to address
the specific device architecture of the Xilinx Versal [15] slices
and shows that an RCCM implementation is possible. The
considered CS are presented in Fig. 2 and are independent
of any target device. Here, 1-Add is newly introduced as
it was not possible to handle 1-Add using the selection
procedure of [6]. The 4-ADD has been removed as the 3-
ADD already reaches a sufficiently good accuracy with the
proposed approach.

To support all possible RCCM configurations, we designed
a generic open-source code generator based on FloPoCo [16],
while AddNet code generation only enabled the specific
RCCM structures used there.

B. RCCM Search Space

To specify a set of coefficients, the placeholders of an
RCCM CS are individually filled with BCs, which in turn
are specified by their type, shifts, and a chosen o(s). The
RCCM search space consists of literally trillions of different
possibilities. So, restrictions are necessary to create a usable
subset for RCCM selection.

These restrictions split into three categories: available op-
eration combinations for o(s), usable BC types at specific

TABLE I
OVERVIEW OF RCCM SEARCH SPACE WITH USED RESTRICTIONS FOR
1-ADD, 2-ADD AND 3-ADD, OCCURRING CONFIG CASES AND RESULTING
UNIQUE COEFFICIENT SET COUNTS

Type o(s) Pos.1 Pos.2 Pos.3 Shmax cases unique
1-Add all A/B - - 8 275,130 97,727
2-Add reduced A/B A/B - 6 1,270,129 832,585
3-Add reduced A A B 4 2,000,000 1,163,742

positions in the CS, and the allowed maximal shift Sy,x for
the shifts ¢, of each BC.

The used restrictions for all RCCM Types are shown in
Table I together with the count of occurring configurations
(cases) and the resulting unique coefficient sets to choose from.
For o(s), a reduced set results in less options to choose from
which depends on the used BC. For type A, a reduced o results
in four sets. All of them contain {A1+B1; A24+B1; A3+BI1}
and differ in {B1—A1}{B1—-A1}{B1—A1}{B1}. For type B,
a reduced o results in one set: {A1-B1; B1—-Al; A2—BI;
B1-A2}

Which BC is allowed to be used at which position in the CS
is defined in columns three to five of Table I. As mentioned
before, not all BC types can be implemented on each FPGA
architecture and therefore the target platforms influence the
possible search space. In this paper, we focus on Virtex FPGAs
and as type C is inefficient for Virtex, it is not used here.

The extended search space enables more possible coefficient
sets, which are no longer restricted to symmetric distributions.

IV. RCCM-AWARE TRAINING

To use an RCCM for a specific computation, its coefficient
set must be selected out of the numerous cases given in Table 1.
The idea behind this selection is similar to that for scaling
regularly quantized fixed-point numbers: Based on the clipped
value set of the floating-point weight values W, an RCCM
providing a suitable weights distribution must be found. As
the implemented weights of an RCCM depend on the selected
coefficient set, the best-fitting coefficient set must be deter-
mined. As usually, batch normalization [17] computation is
used, which cannot be directly implemented by RCCMs. We
already fuse batch normalization effects before quantization
into the weights and, subsequently, RCCM selection.

The search space can be seen as a set /C containing all
representable coefficient sets for a given RCCM architecture.
The goal is to find the coefficient set K € I which results
in the smallest possible quantization error when used to
reassemble W. To compare a coefficient set K with W, the
sum of absolute quantization errors is given as

0k = w;V min(|w — k|) . )

Similar to Sec. II-A, we compute a layer-wise bit shift for
scaling the coefficient sets in C to . In contrast to the fixed-
point scaling, for RCCMs we only take the largest absolute
values kmax = gcnea%ﬂk\) and wmyx = 1%&1/}[5(|w‘) of both sets



TABLE II
STANDARD DEVIATION FACTORS USED FOR CLIPPING IN EXPERIMENTS.
HERE, W, B, A STANDS FOR QUANTIZATION OF WEIGHTS, BIASES, AND
ACTIVATIONS, RESPECTIVELY

Fixed-point RCCM
ResNet-50 6-Bit 7-Bit 8-Bit 9-Bit 10-Bit 1-Add 2-Add 3-Add

w,b 325 40 40 70 100 25 55 8.0
w,b,a 325 40 40 70 100 25 5.5 8.0

ResNet-18 6-Bit 7-Bit 8-Bit 9-Bit 10-Bit 1-Add 2-Add 3-Add

w,b 30 70 70 7.0 100 25 55 8.0
w,b,a 325 325 40 60 90 2.5 5.5 8.0

into account for determining the scaling factor wy,y /kmax and,
from there, the according bit shift as r = |1logs (Wmax/kmax) |-
By using bit shifts r, each K € K can be correctly scaled to
2" K, denoting the element-wise multiplication of K with 2".

Typically, the scaling factor will not be a power of 2 and
in that case, in addition to evaluating metric dsr i according
to (1), we also evaluate d9r+1 5. Finally, we use the shift value
(r or r+1) resulting in the lower dx for RCCM scaling. Then,
the network is retrained with the selected and scaled RCCMs.

V. EXPERIMENTAL RESULTS

We performed training experiments to evaluate our ap-
proach. We do not present new synthesis results, as the
generated hardware differs from [6] only by the omission of
scaling multipliers which are not needed anymore.

We use the pretrained full-precision weights and augmenta-
tion settings from [18]. We retrained ResNet models [19] on
the ImageNet 2012 dataset [20] with our QAT method. All
experiments use the standard SGD optimizer (Ir=10"5, mo-
mentum=0.94, nesterov=True) and categorical-cross-entropy
loss. The outlier clipping settings for all experiments are
shown in Table II. All clipping settings are determined by
validating the accuracy of the PTQ of each model.

To evaluate the influence of quantized activations, we
present the resulting accuracy for a fixed-point only training
in Table III and the results for quantizing the biases and the
activations with fixed-point and the weights with a 2-Add
RCCM are shown in Table I'V. For this approach, an activation
word size between 6 and 8 bits is sufficient. Larger word sizes
have not shown any improvement.

Table V shows our main results compared with the state of
the art. Here, only the weights and biases are quantized similar
to [6]. Note that the floating-point accuracy has advanced a
lot since [6]. Hence, to enable a fair comparison despite the
differences in the baseline accuracy, we compare the relative
top-1 accuracy (rel.) to the corresponding baseline and mark
the superior values bold. It can be seen that the proposed
method results in a significantly lower accuracy drop. This
allows the usage of 3-Add instead of 4-Add as before, which
saves hardware resources and reduces the memory bandwidth
by 25%. It should also be noticed that it is more complex
to perform non-destructive retraining of networks with high
accuracy compared to low accuracy.

TABLE III
ACCURACY RESULTS (%) FOR MODELS WITH DIFFERENT FIXED-POINT
ACTIVATION AND WEIGHT WORD SIZES

Model 6-Bit  8-Bit  10-Bit  float

ResNet-18  Top-1  70.7 72.4 72.8 73.2

ResNet-18  Top-5  89.5 90.7 91.1 91.3

ResNet-50  Top-1 769  77.1 774 77.8

ResNet-50  Top-5 933 93.4 93.6 93.8
TABLE IV

ACCURACY RESULTS (%) FOR RESNET-18 WITH 2-ADD WEIGHT
QUANTIZATION AND MULTIPLE FIXED-POINT ACTIVATION WORD SIZES

Acc. 2-Bit  4-Bit 6-Bit  8-Bit  10-Bit  12-Bit  float
Top-1 0.1 65.1 70.3 70.6 70.7 70.7 73.2
Top-5 0.5 86.2 89.7 89.8 89.8 89.8 91.3

TABLE V

ACCURACY RESULTS FOR DIFFERENT QUANTIZATION SCHEMES IN
COMPARISON WITH ADDNET [6] FOR RESNET-18 AND RESNET-50 AND
MEMORY BANDWIDTH REDUCTIONS COMPARED TO 8 BIT (MEM.) [%]

ResNet-18
AddNet [6]

ResNet-50
AddNet [6]

Proposed Proposed

Top-1 rel. Top-1 rel. Mem. Top-1 rel. Top-1 rel. Mem.

68.6 100.0
66.0 96.2
63.5 92.6

66.4 96.8
3-Add 66.0 96.2
2-Add 65.1 949
1-Add - -

732 100.0 -
7277 993 00 725 954
717 98.0 250 69.6 91.6

00 733 964
250 727 957
500 721 949
75.0 - -

76.0 100.0 77.8 100.0 -
774 995 0.0

7577 973 250

0.0
25.0
49.9
74.9

float
8 bit
6 bit

4-Add

99.1
98.2
87.5

717.1
76.4
68.1

98.4
97.0
84.6

72.0
71.0
61.9

VI. CONCLUSION

We present a tool flow for automatic layer-wise
quantization-aware training (QAT) of DNNs for FPGAs with
an adapted metric. The main achievement is a closer matching
between DNN computations and FPGA device architecture by
using RCCMs avoiding low-bitwidth arithmetic. Our approach
combines the optimized layer-wise RCCM selection with an
adapted retraining, thus matching a specific weight distribution
resulting from our adapted QAT to the FPGA-specific RCCM
implementations. To mitigate penalties introduced by RCCM
restrictions, we extend the RCCM search space by number
with asymmetric coefficient sets. The improved QAT algorithm
with an extended search space outperforms previous RCCM
concepts and maintains almost floating-point accuracy just
using 3-Add RCCMs. This comes with a significant memory
bandwidth reduction which can be raised up to 75% with 1-
Add RCCMs, however with substantial accuracy losses.

Further advancements might be possible by including a LUT
metric into the RCCM selection and to allow different RCCM
types on a per-layer basis with a new selection process.
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