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Abstract—This article addresses the implementation of Finite
Impulse Response filters as digital hardware circuits. It for-
malizes, as a mathematical model, the problem of finding the
optimal circuit for a given frequency specification and given
input/output fixed-point formats. This model captures at the bit
level a wide class of implementations (transposed-form circuits
based on truncated shift-and-add adder graphs). It also captures
formally the constraints due to the frequency specification, as
well as those due to rounding to the output format. This model
can be expressed as an Integer Linear Programming (ILP)
problem, such that the optimal circuit (in terms of bit-level
adders and registers) can be found by standard ILP solvers. This
approach allows for a completely automatic tool from a frequency
specification to a circuit with user-specified input and output
formats. This tool is evaluated (with cost functions modeling
FPGAs) on several benchmarks.

I. Introduction

The hardware implementation of digital filters has received
a lot of attention in the last half century. This article addresses
the construction of circuits implementing Finite Impulse Re-
sponse (FIR) filters for a given frequency specification (Fig. 1).

Classically, this process begins with a filter design (FD)
step that determines the real-valued coefficients hi of a poly-
nomial transfer function H(z) =

∑N
i=0 hiz−i such that the

frequency specification is strictly satisfied. A prerequisite for
a hardware implementation is the quantization (Q) of the
real coefficients into finite precision (fixed-point) data formats,
in such a way that the frequency response is still respected.
Using the quantized coefficients, a digital circuit C can be
implemented (I) as one of a variety of filter structures (e.g.,
direct 1 or transposed form 2 in Fig. 1). For each filter
structure, there are also multiple techniques to build the
corresponding hardware multipliers and adders, and then each
operator can be sized and rounded to optimize the resources.
Two examples are shown in Fig. 1 as 3 and 4 .

The purpose of this article is to address the construction
of optimal circuits. To our knowledge, the state of the art,
so far, only partially answers this problem: previous works
(reviewed in Section II) either explore only a subset of the
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Fig. 1: From a frequency specification to an architecture.

implementation space, or use heuristics, or combine local
optimizations instead of a single global one, or generally do
not address the issue of rounding. This last issue is particularly
relevant to actual applications: typical circuits have the same
input and output formats (for instance 16-bit fixed-point), thus
making rounding mandatory in practice. But rounding is not
linear, therefore rounded circuits are not linear time-invariant
(LTI), and strictly speaking their frequency response is ill-
defined.

In signal processing, rounding errors are typically modeled
as noise, and the measure of the quality of the implementation
step is a signal/quantification noise ratio (SQNR), in dB.
This approach remains statistical, and founded on statistical
hypotheses that are not always true in practice. The present
work adopts a stricter point of view where the quality measure
is the worst-case error. The format of the output word (e.g.,
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8 bits) can be used as a specification of the accuracy (e.g.,
the absolute error on the output should not exceed 2−8). This
is called faithful rounding, and it can be extended to the
frequency domain [1] as follows: “A digital circuit C is faithful
to a frequency specification S when there exists an LTI filter
L satisfying S such that the output of C is a faithful rounding
of the output of L.”

This definition was a missing brick in the construction of a
model of practical circuits (i.e., including rounding) respecting
frequency specification constraints. In the proposed model,
• the implementation space is the set of transposed-

form circuits where the multiple constant multiplication
(MCM) is implemented as a graph of (possibly truncated)
add/subtract nodes; it is detailed in Section III.

• the unknowns are the filter coefficients and the numer-
ous parameters of the implementation (the shift-and-add
graph, the positions of truncations, etc.);

• the cost function is a function of the unknowns that
models the cost of registers and adders at the bit level;

• the quality constraints express faithfulness in the worst
case as stated above.

Finding the optimal circuit in this model can be expressed
as a (mixed) Integer Linear Programming (ILP) problem. ILP
is an efficient and versatile formalism to find optimal solutions
of combinatorial problems over integer variables under linear
constraints. Many powerful ILP solvers exist, so this approach
can rely on them to actually perform the optimization. The
detail of this ILP formulation is given in Section IV, and it is
evaluated in practice in Section V.

II. Related work and positioning
This article completes a historical trend to replace a suc-

cession of local optimization steps FD, Q and I with a global
one. The combination of the FD + Q steps has been studied
since the 1960’s [2], and can even be regarded as solved for
certain practical instances of fixed-point FIR design [3]–[5].

The I step was historically treated separately, with a focus
on multiplierless implementation of the MCM block using
bit-shifts and additions. The construction of efficient MCM
blocks can be based on the binary encoding of the coefficients
[6]–[11], or can use graph-based heuristics [12]–[14]. Optimal
MCM techniques were proposed relatively recently using
dedicated Branch&Bound (B&B) algorithms [15], [16] or an
ILP model [17], [18].

The combined FD+Q+I problem has been solved using
dedicated heuristics and B&B algorithms but in a search
space restricted to special encodings [19], [20]. Recent optimal
B&B [21], [22] and ILP-based [23] approaches solve a com-
plete FD+Q+I problem, but only in the space of (impractical)
circuits that compute the filter output exactly. Besides, these
works optimize the number of adders, while adders in an
MCM may have different costs. The optimal truncated MCM
problem was solved only later [18].

In this work, we use as basis the versatile ILP model
from [23], as it is not as sensitive as the B&B [21], [22] to
design-space size explosion. We improve it to provide practical
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Fig. 2: An adder graph computing 49x and 51x in 3 additions,
with its optimal truncations when the inputs are 3-bit numbers
and a 3-bit output is needed. The cost of each adder is given
in the green labels.

implementations with internal data path truncations that are
optimized but guarantee faithfulness. We achieve this by (1)
using the truncated MCM model [18] counting resources at the
bit-level (and not adder-level as in previous literature), and
(2) linking the output accuracy requirement with truncation
choices that are explored by the solver.

III. TruncatedMultiple ConstantMultipliers

In approaches based on shift-and-add circuits, an MCM may
be represented as an adder-graphs, e.g., Fig. 2. The root of the
adder graph is the input integer x. Each node represents the
addition of two potentially negated and shifted inputs – a shift
multiplies by a power of two. Each adder thus computes an
intermediate factor, called its fundamental. For example, in
Fig. 2 the first adder computes 17x = x ≪ 4 + x = 24 · x + x.

For practical FIR filter implementations, the output of the
MCM block will potentially be truncated to some intermediate
format. To avoid computing unnecessary bits that will be
rounded anyway, the truncations should be lifted into the
adder graph while guaranteeing the faithfulness of the results.
The Truncated MCM ILP model proposed in [18] solves this
problem optimally: given a set of integer constants and associ-
ated input/output data word lengths, construct an adder graph
describing a multiplierless solution together with the potential
intermediate truncations that guarantee faithful rounding based
on a worst-case error model.

At the bit level, an adder or subtracter is built out of full
adders and half adders, and these may include inversions for
subtractions. We do not distinguish these various cells in this
work as they have the same cost on the FPGAs that we target
for our experiments, and use the generic term one-bit adder.
Fig. 2 also shows that for 3-bits inputs and outputs, the MCM
requires 3 adders but these cost only 4 one-bit adders (green
labels on each adder node). Indeed, since a 3-bit approximation
to 51x is enough, removing the 6 lower bits from the 7-bit
signal 17x (indicated as the label 7-6 on the wire) will save
5 one-bit adders while still ensuring the faithful rounding of
both outputs. In total, truncations save 6 one-bit adders out of
the 10 required for the exact MCM.
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Fig. 3: Modeling adder graph topology and errors

In an ILP model [18], an adder node a compute the
fundamental ca (see Fig. 3a). The model aims at finding the
best adder-graph topology such that the leaves of the graph
compute every constant in the target set. The formal constraint
linking together the left and right inputs of an adder node (ca,l

and ca,r) with the shift (sa,l), the negations (σa,l and σa,l) and
a potential right-shift after the node (sa) is the following:

ca = 2−sa
(
(−1)σa,l 2sa,l ca,l + (−1)σa,r ca,r

)
. (1)

The number of one-bit adders in each node, Ba, is in the
worst case equal to its output word length and this can be
propagated through the graph. However, certain topologies can
be more advantageous (e.g., in Fig. 2, 17x is computed from
non-overlapping numbers and uses no one-bit adders if x is
unsigned). Similarly, truncating the data before additions can
save one-bit adders. Numerous special cases were incorporated
in the ILP model [18].

The objective is then to minimize the total number of one-
bit adders,

min
∑

a

Ba. (2)

Each truncation of t bits, however, induces an error |εt | ≤ 2t,
which needs to be propagated. In the ILP model, an error εa

is associated to each adder-node a and is influenced by the
incoming shifted errors and a truncation-induced error (see
Fig. 3). This is formalized by the following constraint:

εa = 2−sa
(
2sa,lεa,l + εa,r + 2ta,l + 2ta,r

)
(3)

Finally, the error of each output adder cout must be bounded
by the corresponding εi, deduced from the user specification.

Equation (3), together with the one-bit adder gain due to
truncations ta of each adder, permits the solver to automatically
find the trade-off between the one-bit adder count Ba and the
error bounds εi. We refer the reader to [18] for the complete
linearized model, which we integrated into our tool.

IV. One ILP to rule them all

Hardware-aware filter design problems usually start with
a functional specification of the frequency domain behavior,
together with the number of filter coefficients. An optimization
procedure constraints filter coefficients to integer values and
aims at minimizing the hardware resources required for the

TABLE I: Relation between filter order N, number of coeffi-
cients M and function cm(ω) for different filter types

Type Sym. N M cm(ω)

I sym. even N
2 + 1 cm(ω) =

1 for m = 0
2 cos(ωm) for m > 0

II sym. odd N+1
2 cm(ω) = 2 cos(ω(m + 1/2))

III asym. even N
2 cm(ω) = 2 sin(ω(m − 1))

IV asym. odd N+1
2 cm(ω) = 2 sin(ω(m + 1/2))

MCM block.This section incorporates the fine-grained Trun-
cated MCM model [18] into the ILP formulation based on [23]
and give a new model of all sources of errors to dispatch
the acceptable error-budget between data paths and maximize
truncations.

A. Design of linear-phase FIR filters with fixed-point coeffi-
cients

An N-th order linear phase FIR filter can be described by
its zero-phase frequency response which has the property that
its magnitude is identical to that of the transfer function. Let
D(ω) and D(ω) be the desired lower and upper bounds of the
output frequency response HR(ω). The associated frequency
specification-based FIR filter design problem consists of find-
ing real coefficients hm, m = 0, . . . ,M − 1 that fulfill

D(ω) ⩽
M−1∑
m=0

hmcm(ω) ⩽ D(ω), ∀ω ∈ Ω, (4)

where Ω ⊆ [0, π] is a set of target frequency bands (usu-
ally pass and stopbands) and cm(ω) terms are trigonometric
functions. Relation between cm(ω), number of coefficients M,
the degree N and the filter type is given in Table I The
FD problem (4) is a semi-infinite constraint, but it is usually
discretized over Ωd ⊆ Ω [23].

Fixed-point FIR filter design problems further restrict the
search space to integer variables h′m with |h′m| < 2B, where the
coefficients of HR(ω) are

hm = 2−Bh′m (5)

and B is the maximum effective word length of each coefficient
(excluding sign bit).

Applying (5) to the discretized version of (4) we obtain a
finite number of linear constraints over integer variables h′m

2BD(ω) ⩽
M−1∑
m=0

h′mcm(ω) ⩽ 2BD(ω), ∀ω ∈ Ωd. (6)

B. Implementation space and cost function

MCM block: The filter coefficients h′m should now be
linked to the inputs of the truncated MCM problem. Similarly
to [23], we exploit the versatility of ILP modeling and export
the Truncated MCM model into the global ILP and provide the
so-called glue constraints. First, we need to connect the integer



filter coefficients h′m to the target constant set of Truncated
MCM model:

h′m = (−1)ϕ2scaM if oa,m,s,ϕ = 1 (7)

where aM denotes a multiplier-block adder, ϕ is the coefficient
sign and binary variable oa,m,s,ϕ encodes if h′m, potentially
shifted by s bits, is connected to the fundamental ca.

Structural adder chain: Then, we need to connect the
outputs of the Truncated MCM model to the structural adders.
Denote aS a set of at most N − 1 structural adders, and BaS

its one-bit adder cost. According to symmetries and even/odd
degree of the filter (see Table I), most of the MCM-block co-
efficients hm will appear twice in the adder chain. Since inputs
of the structural adder are independent, we have to compute
the number of one-bit adders based on worst-case data word
length. The only way to gain one-bit adders is to introduce
truncations taS−1 and taM on the preceding structural adder
and corresponding MCM-block output, respectively. Hence,
the one-bit adder cost of a structural adder is, recursively,

BaS = msbaS−1 +msbaM −max(taS−1, taM ), (8)

where msbaS−1 corresponds to the most significant bit position
of the preceding structural adder, and msbaM corresponds to
the correctly-computed multiplier-block output, respecting the
filter type. We define msb0 to the MSB position of h0x.

Cost function: In contrast to previous works, the use of
Truncated MCM permits us to fine-tune the cost function to
the gate-level. Our objective is to minimize the total number of
one-bit adders in the MCM block and structural adder chain:

min
∑

aM∪aS

(BaM + BaS ) . (9)

C. Data-path sizing constraints

As introduced in [1], faithfulness of a digital circuit to
frequency specifications has two components: behavior of the
linear part of the circuit is guaranteed by the FD constraints (4)
and behavior of the nonlinear part due to internal rounding
should be suppressed to the last bit of the computed output
signal. Denote εout = ỹ(k) − y(k) the output error, where ỹ
is the finite-precision counterpart of the real signal y. The
faithfulness to output word length specification, e.g., in terms
of the least significant bit position 2ℓout translates into the
constraint |εout| < 2ℓout . Our task now is to define the link
between the output error εout, the structural adder errors εaS

and the MCM-block errors εaM that constrain the truncations.
First, we need to account for the final rounding (see Fig. 1

bottom), which induces an error that is bounded by 2ℓout−1.
Hence, the last structural adder must actually satisfy the
following constraint: ε = |εaS | < 2ℓout−1, aS = N − 1.

We can recursively define the error-propagation rule through
each potentially truncated structural adder:

εaS = εaS−1 + εaM + 2taS + 2taM , (10)

where the the errors from the preceding registers and from the
MCM block are added to the potential truncation errors. By

TABLE II: Specifications of the filters used in experiments

NameΩp/π Ωs/π δp δs

T [0, 0.3] [0.5, 1] 0.01 0.01
S2 [0, 0.042] [0.14, 1] 0.026 0.001

counting the number of trailing zeros in inputs of each adder,
as in [18], we significantly tighten the propagated error bound,
since truncating those does not induce any error.

With (10) we provided the link to Truncated MCM block,
and relate the truncations in structural adders with the overall
rounding error, completing the global ILP model. The full list
of constraints can be found in the tool’s web page.

V. Experimental Results

To evaluate our method, we implemented the ILP model
generation with Julia within the Shift-And-Add circuits for
digital FIR filters (SAFIR) project1. To be able to perform
hardware experiments, we used FloPoCo2 and implemented a
new operator IntFIRTransposed. The automatic test bench
generation of FloPoCo was used to validate the obtained
designs. All implemented tools are published as open-source.

We test our method on a reference specifications from the
literature commonly referred to as S 2 and used in many
previous works [11], [20], [22]–[24]. We also introduce a small
toy filter T for illustration purpose.

They are low-pass filters defined by

1 − δp ⩽ HR(ω) ⩽ 1 + δp, ω ∈ Ωp (passband),
−δs ⩽ HR(ω) ⩽ δs, ω ∈ Ωs (stopband),

where the values of δp, δs,Ωp,Ωs for each specification are
given in Table II.

For the ILP solving, we used Gurobi Optimizer [25] v10.0
with a timeout limit of 8 hours. The input word size was set
to win = 8 bit. The results for different filters and different
values of ε are given in Table III. To get a target output
word size of wout, ε has to be set to ε = 2∆wout−1, where
∆wout = wout,full − wout is the difference between the output
word size of the full precision output and the target output
word size. The table gives the number of adder/subtractors,
and the number of one-bit adders for the MCM block (MCM),
the structural adders (SA) and the total number (tot). For T,
the ILP proves the optimality of solutions (one is shown in
Fig. 4), but for S2 the model is too large and the optimality
cannot be proven within the timeout. Still, the found solutions
save one-bit adders thanks to truncation as expected.

Synthesis experiments have been performed for all de-
signs using Vivado 2019.1 targeting an AMD Kintex
(xc7k70tfbv484-3). The resulting LUT numbers and the crit-
ical path delay tcp are shown in the last two columns of
Table III. As each one-bit adder requires one LUT on current
FPGAs (apart from unpredictable optimizations in synthesis),

1https://gitlab.com/filteropt/safir
2https://flopoco.org

https://gitlab.com/filteropt/safir
https://flopoco.org


TABLE III: Optimization and synthesis results

Filter Target
Error

#adders #half/full adders synthesis

MCM SA tot MCM SA tot LUTs tcp [ns]

T
ε = 0 2 8 10 16 90 106 111 6.05
ε < 24 2 8 10 16 85 101 111 6.05
ε < 28 2 8 10 16 71 87 95 6.06

S2
ε = 0 15 51 66 139 892 1031 1038 9.79
ε < 24 15 51 66 134 886 1020 1025 9.40
ε < 28 15 41 66 137 840 977 996 10.57
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Fig. 4: The complete solution for the toy filter T faithful
to 8 bits (ε < 26) on signed inputs. Note that three of the
structural adders actually compute subtractions, to implement
the coefficients -4.

the obtained LUTs closely follow the number of one-bit adders
from the optimization.

VI. Conclusion
Based on the recent improvements in the ILP-based ap-

proaches for the design, quantization and implementation of
multiplierless FIR filters, we develop a last missing piece in
the mathematical modeling and optimal implementation of
hardware-efficient FIR filters. The versatility of ILP models
ensures that changing the metric or updating the implemen-
tation method is as simple as adding new variables and con-
straints into the model. We present a specifications-to-VHDL
push-button tool, SAFIR, which takes care of all operator
design, sizing and rounding automatically, letting the digital
filter designer to focus on more high-level implementations
questions, e.g., input/output word lengths.
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